Quantum Computing in the RAN with Qu4Fec: Closing Gaps Towards Quantum-based FEC Processors

Nikolaos Apostolakis^{1,2} Marta Sierra-Obea¹ Marco Gramaglia¹ Jose A. Ayala-Romero³ Andres Garcia-Saavedra³ Marco Fiore² Albert Banchs^{1,2} Xavier Costa-Perez^{3,4,5}

¹University Carlos III of Madrid ²IMDEA Networks Institute ³NEC Laboratories Europe ⁴i2CAT ⁵ICRFA

SIGMETRICS 2025, June 9-13, Stony Brook, NY, US

Motivation and Research Goal

- Wireless baseband processing is the most power-intensive tasks in 5G and future 6G networks.
 - Baseband processors can consume up to 350 kW depending on MIMO and antenna configurations.

¹Kasi et al., IEEE Trans. Quantum Engineering, 2023

²Villalonga-Correa et al., Quantum Sci. Technol., 2023

Motivation and Research Goal

- Wireless baseband processing is the most power-intensive tasks in 5G and future 6G networks.
 - Baseband processors can consume up to 350 kW depending on MIMO and antenna configurations.
- Quantum computing is emerging as a promising solution for complex, compute-heavy problems.
 - Potential to reduce baseband-related power consumption to 25-30 kW. 2

¹Kasi et al., IEEE Trans. Quantum Engineering, 2023

Villalonga-Correa et al., Quantum Sci. Technol., 2023

Motivation and Research Goal

- Wireless baseband processing is the most power-intensive tasks in 5G and future 6G networks.
 - Baseband processors can consume up to 350 kW depending on MIMO and antenna configurations.
- Quantum computing is emerging as a promising solution for complex, compute-heavy problems.
 - Potential to reduce baseband-related power consumption to 25–30 kW.²

Research Goal:

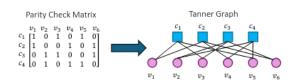
Explore the feasibility and hardware constraints of quantum-based **FEC decoding** in future wireless systems.

¹Kasi et al., IEEE Trans. Quantum Engineering, 2023

Villalonga-Correa et al., Quantum Sci. Technol., 2023

Primer to LDPC Codes

- Low-Density Parity-Check (LDPC) codes are FEC codes defined by a sparse $m \times n$ parity-check matrix **H**.
- A valid codeword satisfies the constraint: $\mathbf{H} \cdot \mathbf{c}^T = \mathbf{0}$
- LDPC codes can also be visualized using a Tanner graph



LDPC Decoding

Maximum-Likelihood (ML) Decoding

- Let $\hat{\mathbf{y}}$ be the received signal after transmitting codeword \mathbf{y} over a noisy channel.
- The ML decoder finds the most probable transmitted codeword:

$$\hat{\mathbf{x}} = \arg\max_{\mathbf{x} \in \mathcal{C}} P(\mathbf{x} \mid \hat{\mathbf{y}})$$

Belief Propagation (BP) Decoding

BP is an iterative algorithm that approximates ML decoding.

Primer to Quantum Annealers

What is a Quantum Annealer?

Primer to Quantum Annealers

What is a Quantum Annealer?

 A quantum annealer (QA) is a specialized quantum computer designed to solve Quadratic Unconstrained Binary Optimization (QUBO) problems.

$$E(q) = \sum_{i} h_i q_i + \sum_{i < j} J_{ij} q_i q_j$$

- $q_i \in \{0,1\}$ are binary decision variables.
- h_i and J_{ij} are problem-specific coefficients.

Primer to Quantum Annealers

What is a Quantum Annealer?

 A quantum annealer (QA) is a specialized quantum computer designed to solve Quadratic Unconstrained Binary Optimization (QUBO) problems.

$$E(q) = \sum_{i} h_i q_i + \sum_{i < j} J_{ij} q_i q_j$$

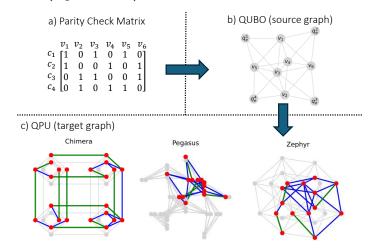
- $q_i \in \{0,1\}$ are binary decision variables.
- h_i and J_{ij} are problem-specific coefficients.

Solving a Problem on a Quantum Annealer:

- Formulate the problem as a QUBO.
- Map logical variables to chains of physical qubits (embedding).
- **1** Program qubits and couplers with h_i and J_{ij} .
- Run the annealing process to minimize E(q).
- Setrieve and analyze the solutions.

Embedding: Mapping Logical Problems to Hardware

 Every QUBO defines a source graph that needs to be mapped to the target graph, defined by the physical qubit layout of the Quantum hardware (e.g., D-Wave)



Qu4Fec - Proposal

- We propose Qu4Fec a problem formulation for quantum-based LDPC decoding.
- We rely on well-established code design techniques from the literature (e.g., Gallager codes)
- We provide a new problem formulation directly derived from the fundamental maximum-likelihood (ML) decoding problem for LDPC codes.
 - This ensures that the solution estimated by the QA is formally guaranteed to be the ML solution.

- The Qu4Fec QUBO formulation is: $Q = aQ_{LDPC} + Q_C$
- Our key innovations include:

- The Qu4Fec QUBO formulation is: $Q = aQ_{LDPC} + Q_C$
- Our key innovations include:
 - ML-derived objective: Starting from the fundamental ML decoding formulation, we derive the correlation term (for BPSK modulation) as:

$$Q_C = \sum_{k=1}^{n} -y_k (1 - 2q_k)$$

where $q_k \in \{0,1\}$ represents the k-th bit of the estimated codeword.

- The Qu4Fec QUBO formulation is: $Q = aQ_{LDPC} + Q_C$
- Our key innovations include:
 - ML-derived objective: Starting from the fundamental ML decoding formulation, we derive the correlation term (for BPSK modulation) as:

$$Q_C = \sum_{k=1}^{n} -y_k (1 - 2q_k)$$

where $q_k \in \{0,1\}$ represents the k-th bit of the estimated codeword.

2 Data-driven constraint scaling: The LDPC constraint term is weighted by a factor that depends on the received channel vector:

$$a = \sum_{k=1}^{n} 2|y_k|$$

- The Qu4Fec QUBO formulation is: $Q = aQ_{LDPC} + Q_C$
- Our key innovations include:
 - ML-derived objective: Starting from the fundamental ML decoding formulation, we derive the correlation term (for BPSK modulation) as:

$$Q_C = \sum_{k=1}^{n} -y_k (1 - 2q_k)$$

where $q_k \in \{0,1\}$ represents the k-th bit of the estimated codeword.

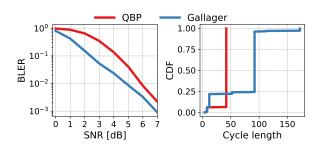
2 Data-driven constraint scaling: The LDPC constraint term is weighted by a factor that depends on the received channel vector:

$$a = \sum_{k=1}^{n} 2|y_k|$$

 We formally prove that this formulation guarantees the QUBO's minimum-energy solution coincides with the ML solution.

QBP – Limitations

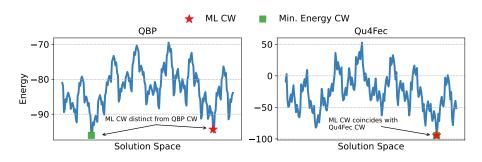
- **QBP** ³ was the first to formulate LDPC decoding on a QA.
- QBP tailors the LDPC code to the qubit topology of the quantum annealer.
 - This often results in Tanner graphs with short cycles, weakening the LDPC code's performance.
- In contrast, Qu4Fec uses Gallager codes.



 $^{^3}$ Kasi et al., "Towards Quantum Belief Propagation for LDPC Decoding in Wireless Networks," MobiCom 2020

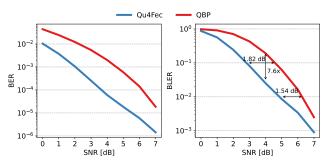
QBP - Limitations (cont'd)

- The QBP formulation **does not originate** from the ML objective.
- QBP QUBO's minimum energy solution often does not match the ML-optimal codeword.
- QBP pretunes the hyperparameter a according to SNR.



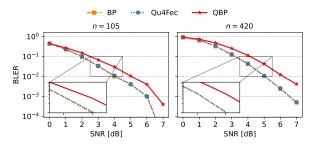
Qu4Fec - Evaluation

- We evaluated the impact of code design and QUBO formulation on decoding performance using Simulated Annealing (SA)
- Results show significant improvements in BLER across a wide SNR range.



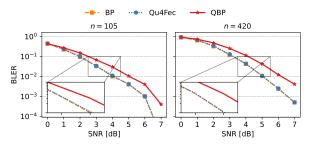
Qu4Fec – Evaluation (cont'd)

 To isolate the effect of QUBO formulation, all methods used the same Gallager-designed LDPC code.



Qu4Fec – Evaluation (cont'd)

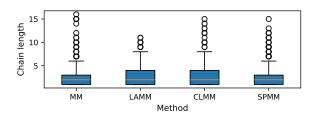
 To isolate the effect of QUBO formulation, all methods used the same Gallager-designed LDPC code.



 Testing both Qu4Fec and QBP on actual QA resulted in degraded performance, attributed to non-deal embeddings and scaling and quantization impact.

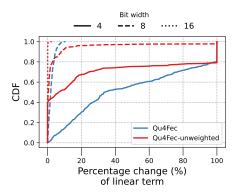
Effect of Non-Ideal Embeddings

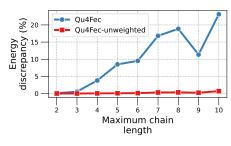
- The noise in QAs result in perturbed linear and quadratic terms $h + \delta h, \quad J + \delta J$
- The sparse connectivity of the qubit graph forces the embedding to form longer chains of physical qubits.
- We experimented with multiple embedding heuristics beyond the default Minorminer (MM): LAMM, CLMM, and SPMM.



Effect of Scaling and Quantization

- Before programming the QA
 - **1** All terms are **scaled**: $h \in [-4, 4], J \in [-1, 1],$
 - 2 and quantized with limited precision (e.g. 4, 8, 16-bit resolution)
- This discretization adds further distortion to the energy landscape and may alter the minimum-energy solution.





Conclusion

- Introduced Qu4Fec a new QUBO formulation for LDPC decoding on quantum annealers — demonstrating superior BLER performance compared to QBP.
- Conducted extensive evaluation on quantum annealers, revealing key hardware limitations — including non-ideal embeddings and quantization effects.
- Advise the full paper for more details and results (e.g. extensions of QA to address the LDPC codes)!
- Future direction: explore the design of quantum-native error correction codes that match the connectivity and noise characteristics of current QAs

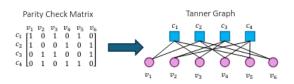
Thank You!

Supported by:

Appendix

Primer to LDPC Codes

- Low-Density Parity-Check (LDPC) codes are FEC codes defined by a sparse $m \times n$ parity-check matrix **H**.
- Each row in **H** defines a parity-check constraint; each column corresponds to a bit in the codeword $\mathbf{c} \in \{0,1\}^n$.
- A valid codeword satisfies the constraint: $\mathbf{H} \cdot \mathbf{c}^T = \mathbf{0}$
- LDPC codes can also be visualized using a Tanner graph a bipartite graph with:
 - Variable nodes (codeword bits)
 - Check nodes (parity constraints)
 - Edges corresponding to 1s in H



LDPC Decoding

Maximum-Likelihood (ML) Decoding

- Let $\hat{\mathbf{y}}$ be the received signal after transmitting codeword \mathbf{y} over a noisy channel.
- The ML decoder finds the most probable transmitted codeword:

$$\hat{\mathbf{x}} = \arg\max_{\mathbf{x} \in \mathcal{C}} P(\mathbf{x} \mid \hat{\mathbf{y}})$$

 ML decoding is optimal but computationally intractable for large codes.

Belief Propagation (BP) Decoding

- BP is an efficient iterative algorithm that approximates ML decoding.
- It operates on the Tanner graph using message passing between variable and check nodes.

QBP: LDPC Decoding as a QUBO

- Quantum Belief Propagation (QBP) ⁴ was the first to formulate LDPC decoding on a quantum annealer (QA).
- For a codeword of n bits, QBP outputs a binary vector: q_1, q_2, \ldots, q_n
- The QUBO formulation is:

$$Q = a \cdot Q_{\mathsf{LDPC}} + Q_{C}$$

where:

- ullet Q_{LDPC} encodes the hard parity-check constraints.
- Q_C captures the correlation with the received noisy vector $\hat{\mathbf{y}}$.
- a is a weighting factor (dependent on SNR), requiring hyperparameter tuning.

⁴Kasi et al., "Towards Quantum Belief Propagation for LDPC Decoding in Wireless Networks," MobiCom 2020