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Motivation and Research Goal

@ Wireless baseband processing is the most power-intensive tasks in 5G
and future 6G networks.
e Baseband processors can consume up to 350 kW depending on MIMO
and antenna configurations. !

lKasi et al., IEEE Trans. Quantum Engineering, 2023
2VilIannga-Correa et al., Quantum Sci. Technol., 2023
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Motivation and Research Goal

@ Wireless baseband processing is the most power-intensive tasks in 5G
and future 6G networks.

e Baseband processors can consume up to 350 kW depending on MIMO
and antenna configurations. !

@ Quantum computing is emerging as a promising solution for complex,
compute-heavy problems.

o Potential to reduce baseband-related power consumption to 25-30
kw. 2

Research Goal:

Explore the feasibility and hardware constraints of quantum-based FEC
decoding in future wireless systems.

lKasi et al., IEEE Trans. Quantum Engineering, 2023
2VilIannga-Correa et al., Quantum Sci. Technol., 2023
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Primer to LDPC Codes

@ Low-Density Parity-Check (LDPC) codes are FEC codes defined by a
sparse m x n parity-check matrix H.

@ A valid codeword satisfies the constraint: H-c’ =0

@ LDPC codes can also be visualized using a Tanner graph

Parity Check Matrix Tanner Graph
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LDPC Decoding

Maximum-Likelihood (ML) Decoding

@ Let y be the received signal after transmitting codeword y over a
noisy channel.

@ The ML decoder finds the most probable transmitted codeword:

. Pix |4
% = argmax P(x | §)

Belief Propagation (BP) Decoding

@ BP is an iterative algorithm that approximates ML decoding.
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Primer to Quantum Annealers

What is a Quantum Annealer?
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Primer to Quantum Annealers

What is a Quantum Annealer?
@ A quantum annealer (QA) is a specialized quantum computer
designed to solve Quadratic Unconstrained Binary Optimization
(QUBO) problems.

E(q) = Z higi + Y Jjaiqj

i<j

@ gi € {0,1} are binary decision variables.
@ h; and Jj; are problem-specific coefficients.
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Primer to Quantum Annealers

What is a Quantum Annealer?
@ A quantum annealer (QA) is a specialized quantum computer
designed to solve Quadratic Unconstrained Binary Optimization
(QUBO) problems.

E(q) = Z higi + Y Jjaiqj

i<j

@ gi € {0,1} are binary decision variables.
@ h; and Jj; are problem-specific coefficients.

Solving a Problem on a Quantum Annealer:
© Formulate the problem as a QUBO.
@ Map logical variables to chains of physical qubits (embedding).
© Program qubits and couplers with h; and Jj;.
© Run the annealing process to minimize E(q).
© Retrieve and analyze the solutions.
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Embedding: Mapping Logical Problems to Hardware

@ Every QUBO defines a source graph that needs to be mapped to the
target graph, defined by the physical qubit layout of the Quantum

hardware (e.g., D-Wave)
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b) QUBO (source graph)
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Qu4Fec — Proposal

@ We propose Qu4Fec — a problem formulation for quantum-based
LDPC decoding.

@ We rely on well-established code design techniques from the literature
(e.g., Gallager codes)

@ We provide a new problem formulation directly derived from the
fundamental maximum-likelihood (ML) decoding problem for LDPC
codes.

e This ensures that the solution estimated by the QA is formally
guaranteed to be the ML solution.
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Qu4Fec — LDPC Decoding QUBO

@ The Qu4Fec QUBO formulation is: @ = aQ ppc + Q¢
@ Our key innovations include:
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Qu4Fec — LDPC Decoding QUBO

@ The Qu4Fec QUBO formulation is: @ = aQ ppc + Q¢
@ Our key innovations include:

© ML-derived objective: Starting from the fundamental ML decoding
formulation, we derive the correlation term (for BPSK modulation) as:

n

Qc = —yi(1-2q)

k=1

where gx € {0,1} represents the k-th bit of the estimated codeword.
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Qu4Fec — LDPC Decoding QUBO

@ The Qu4Fec QUBO formulation is: Q = aQppc + Qc
@ Our key innovations include:
© ML-derived objective: Starting from the fundamental ML decoding
formulation, we derive the correlation term (for BPSK modulation) as:

n

Qc = —yi(1-2q)

k=1

where gx € {0,1} represents the k-th bit of the estimated codeword.
© Data-driven constraint scaling: The LDPC constraint term is
weighted by a factor that depends on the received channel vector:

a= ZQ|)/I<|
k=1
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Qu4Fec — LDPC Decoding QUBO

@ The Qu4Fec QUBO formulation is: Q = aQppc + Qc
@ Our key innovations include:
© ML-derived objective: Starting from the fundamental ML decoding
formulation, we derive the correlation term (for BPSK modulation) as:

n

Qc = —yi(1-2q)

k=1

where gx € {0,1} represents the k-th bit of the estimated codeword.
© Data-driven constraint scaling: The LDPC constraint term is
weighted by a factor that depends on the received channel vector:

a= ZQ|)//<|
k=1

@ We formally prove that this formulation guarantees the QUBO'’s
minimum-energy solution coincides with the ML solution.
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QBP - Limitations

@ QBP 3 was the first to formulate LDPC decoding on a QA.

o QBP tailors the LDPC code to the qubit topology of the quantum
annealer.

e This often results in Tanner graphs with short cycles, weakening the
LDPC code's performance.

@ In contrast, Qu4Fec uses Gallager codes.

— QBP = Gallager
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QBP — Limitations (cont'd)

@ The QBP formulation does not originate from the ML objective.

o QBP QUBQ’s minimum energy solution often does not match the
ML-optimal codeword.

@ QBP pretunes the hyperparameter a according to SNR.
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Qu4Fec — Evaluation

@ We evaluated the impact of code design and QUBO formulation on
decoding performance using Simulated Annealing (SA)

@ Results show significant improvements in BLER across a wide SNR

range.
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Qu4Fec — Evaluation (cont'd)

@ To isolate the effect of QUBO formulation, all methods used the
same Gallager-designed LDPC code.

~®- BP e Qu4Fec —— QBP
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u4Fec — Evaluation (cont'd

@ To isolate the effect of QUBO formulation, all methods used the
same Gallager-designed LDPC code.
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@ Testing both Qu4Fec and QBP on actual QA resulted in degraded
performance, attributed to non-deal embeddings and scaling and
quantization impact.
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Effect of Non-Ideal Embeddings

@ The noise in QAs result in perturbed linear and quadratic terms
h+dh, J+6J

@ The sparse connectivity of the qubit graph forces the embedding to
form longer chains of physical qubits.

@ We experimented with multiple embedding heuristics beyond the
default Minorminer (MM): LAMM, CLMM, and SPMM.
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Effect of Scaling and Quantization

@ Before programming the QA
@ All terms are scaled: h e [—4,4], Je[-1,1],
@ and quantized with limited precision (e.g. 4, 8, 16-bit resolution)
@ This discretization adds further distortion to the energy landscape
and may alter the minimum-energy solution.
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Conclusion

o Introduced Qu4Fec — a new QUBO formulation for LDPC decoding
on quantum annealers — demonstrating superior BLER performance
compared to QBP.

@ Conducted extensive evaluation on quantum annealers, revealing key
hardware limitations — including non-ideal embeddings and
quantization effects.

@ Aduvise the full paper for more details and results (e.g. extensions of
QA to address the LDPC codes) !

@ Future direction: explore the design of quantum-native error
correction codes that match the connectivity and noise
characteristics of current QAs
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Appendix



Primer to LDPC Codes

@ Low-Density Parity-Check (LDPC) codes are FEC codes defined by a
sparse m x n parity-check matrix H.

@ Each row in H defines a parity-check constraint; each column
corresponds to a bit in the codeword ¢ € {0,1}".

@ A valid codeword satisfies the constraint:H -¢” = 0

@ LDPC codes can also be visualized using a Tanner graph — a
bipartite graph with:

o Variable nodes (codeword bits)

o Check nodes (parity constraints)
e Edges corresponding to 1s in H

Parity Check Matrix Tanner Graph
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LDPC Decoding

Maximum-Likelihood (ML) Decoding

@ Let y be the received signal after transmitting codeword y over a
noisy channel.

@ The ML decoder finds the most probable transmitted codeword:

. Pix |4
% = argmax P(x | §)

@ ML decoding is optimal but computationally intractable for large
codes.

Belief Propagation (BP) Decoding
@ BP is an efficient iterative algorithm that approximates ML decoding.

@ |t operates on the Tanner graph using message passing between
variable and check nodes.
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QBP: LDPC Decoding as a QUBO

e Quantum Belief Propagation (QBP) # was the first to formulate
LDPC decoding on a quantum annealer (QA).
@ For a codeword of n bits, QBP outputs a binary vector: g1, q2,...,qn

@ The QUBO formulation is:
Q =a- Quopc + Qc

where:
e Quppc encodes the hard parity-check constraints.
e Q¢ captures the correlation with the received noisy vector y.
e ais a weighting factor (dependent on SNR), requiring hyperparameter

tuning.

4Kasi et al., “Towards Quantum Belief Propagation for LDPC Decoding in Wireless Networks,” MobiCom 2020
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